Home    News    Links    Tigers   


Bibliography

Popular Science

    Oxford Astronomy, S. & J. Mitton, Oxford University Press (2003)
A popular text with pretty pictures. It gives a guided tour of space, in particular the Solar System. Illustrated orbits of planets and comets provide a useful introduction to the different scales.

References for Students

    The Lighter Side of Gravity, J.V. Narlikar, Cambridge University Press (1996)
A lucid explanation of gravity on a non-technical level, ranging from planets to black holes. Even experts can benefit by reading this delightful book, with its original ways of looking at the subject of gravitation from Newton to Einstein.

    The Art of Computational Science, P. Hut & J. Makino (2004), artscicom.org, This is a series of books published on the web (a 10 year project) written as a dialogue between two young people.


Scholarly publications for Researchers

    A regularization of the three-body problem, S.J. Aarseth & K. Zare, Celes. Mech. 10, 185 (1974)


    Gravitational N-body Simulations, S.J. Aarseth, Cambridge University Press (2003)
See The Book

    Close triple approaches and escape in the three-body problem, S.J. Aarseth, J.P. Anosova, V.V. Orlov & V.G. Szebehely, Celes. Mech. 60, 131 (1994)


    A global regularisation of the gravitational N-body problem, D.C. Heggie, Celes. Mech. 10, 217 (1974)


    Computer simulations of encounters between massive black holes and binaries, J.G. Hills, Astron. J. 102, 704 (1991)


    Binary - single star scattering, P. Hut & J.N. Bahcall, Astrophys. J. 268, 319 (1983)


    Dynamics and stability of three-body systems, R. Mardling & S. Aarseth, NATO Conf. Proc. eds. B. Steves & A. Roy, 385 (1999)


    Binary - single star scattering, S.L.W. McMillan & P. Hut, Astrophys. J. 467, 348 (1996)


    Encounters of binaries, S. Mikkola, M. N. 203, 1107 (1983)


    An implementation of N-body chain regularization, S. Mikkola & S.J. Aarseth, Celes. Mech. 57, 439 (1993)


    A numerical investigation of the one-dimensional Newtonian three-body problem, S. Mikkola & J. Hietarinta, Celes. Mech. 46, 1 (1989)


    Sufficient conditions for escape in the three-body problem, E.M. Standish, Celes. Mech. 4, 44 (1972)


    Statistics of three-body experiments, M.J. Valtonen, Ap. Sp. Sci. 42, 331 (1976)


    A regularization of multiple encounters in gravitational N-body problems, K. Zare, Celes. Mech. 10, 207 (1974)